Standard Components For Plastic Mold 2021

〔 PRODUCT DATA 〕 STRENGTH OF INLAY SECTION OF POSITIONING LOCKING BLOCKS WEDGE AND CUTTING AMOUNT

〔 PRODUCT DATA 〕 METHODS FOR COMPUTING ONE–STEP CORE PIN DIMENSIONS

■ One Step Core Pins: Computing the Gradient θ of the Shaped Section

■ Strength of Positioning Locking Block Inlay Sections

Considering the force acting on the inlay section to be cantilever as shown in the figure on the left Bending Moment Section Modulus Mmax. = F∙H Z = A∙ L 2 6 Allowable Stress σ b = Mmax. Z = F∙H Z F = σ b ∙Z H = σ b ∙A∙ L 2 6 × H {maximum stress}

For A = A 1

F

F

H

F

L

F

A

Step 1A

Step 1B/1E

Step 1C

Step 1D

A–V 2 L –D + A

D–V 2 L

A–V 2 L

A–V 2 ( L –C)

Gradient θ computation

θ= tan –1

θ= tan –1

θ= tan –1

θ= tan –1

① Inlay height H The below table shows that the longer the H, the lower the maximum stress a locking block can endure.

σ b = 1200–1800kgf/cm

A = 25mm L = 10mm H = 4mm, then F =

V = D–2 L tan θ

V = A–2 L tan θ

V = A–(2 L –D + A) tan θ

V = A–2 ( L –C) tan θ

V dimension computation

2 {11760–17640N/cm 2 }

(When the material is hard steel) Assuming that σ b = 1200kgf/cm 2 {11760N/cm 2 }

F { Maximum stress }

H

Strength coefficient

E For the shaft diameter designation 0.01mm increments type, calculate using P for D. Calculation of tan –1 (arc tangent) is simple using a function calculator. • How to derive the tan –1 ( arc tangent ) value from “ Conversion table of trigonometric functions ” ■ To find tan –1 ( x ) , please refer to the Conversion table of trigonometric function on D P.1215 . When the x of tan –1 (x) is less than or equal to 1 When the x of tan –1 (x) is greater than or equal to 1

kgf { N }

4 5 6 7 8 9

1250 {12258} 1000 {9800} 833 {8163} 714 {6997} 625 {6125} 556 {5449} 500 {4900}

100

1200 × 2.5 × 1 2 6 × 0.4

= 3000 2.4

= 1250kgf {12250N}

80 67 57 50 44 40

Assuming stress concentrating factor α = 2.5 { α = 2.5 when inlay corner area R is close to 0} F = 1250 2.5 = 500kgf {4900N}

① Locate the tan θ column from among the trigonometric functions listed on the top section of the Conversion table, then proceed down the column until you find the relevant value. ② The angle for θ on the left–hand column for that relevant value will be almost equal to the calculated value for tan –1 .

① Locate the tan θ column from among the trigonometric functions listed on the bottom section of the Conversion table, then proceed down the column until you find the relevant value. ② The angle for θ on the right–hand column for that relevant value will be almost equal to the calculated value for tan –1 .

10

② Inlay length L In the above case, maximum stress F 1 when L is lengthened from 10mm to 12mm is: F 1 = 1200 × 2.5 × 1.2 2 6 × 0.4 = 4320 2.4 = 1800kgf {17640N} L = 10 c 12 F 1 F = 1800 1250 = 1.44 The calculation indicates that the strength of the inlay section is 1.44 times greater.

③ Inlay corner area R The larger the corner area R, the smaller the α (stress concentrating factor). Therefore, the maximum stress which the locking block can endure increases.

(Example) tan –1 (1.4281) ≒ 55°00’

(Example) tan –1 (0.0875) ≒ 5°00’

R

tan –1 (0.0850) = 4°50’–5°00’

tan –1 (1.4315) = 55°00’–55°10’

θ (theta)

When deg (angle) = 0°00’–11°50’

.5640 .5664 .5688 .5712 .5736 .5760 .5783 .5807 .5831 .5854

.8250 .8241 .8225 .8208 .8192 .8175 .8158 .8141 .8124 .8107 sin θ

.6380 .6873 .6916 .6959 .7002 .7046 .7089 .7133 .7177 .7221 cot θ

1.4641 1.4550 1.4460 1.4370 1.4281 1.4193 1.4106 1.4019 1.3934 1.3848 tan θ

20 30 40 50 10 20 30 40 50

40 30 20 10 50 40 30 20

sin θ .0000

cos θ 1.0000

tan θ .0000

cot θ

deg (angle°)

Large R ←→ Small R 1 ≦ α ≦ 3

∞ 90°00’

0°00’

・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

・ ・ ・ 30 20 10 50 40 30

55°00’

35°00’

30 40 50 10 20 30

.0785 .0814 .0843 .0872 .0901 .0929 .0958

.9969 .9967 .9964 .9962 .9959 .9957 .9954

.0787 .0816 .0846 .0875 .0904 .0934 .0963

12.706 12.251 11.826 11.430 11.059 10.712 10.885

■ Relationship Be tween Wedge and Cutting Amount

Sinking quantity of the wedge when cut 0.1mm to inclined plane with an angle of A°

Sinking quantity of the wedge when cut 0.1mm in perpendicular direction with an angle of A°

85°00’

5°00’

54°10’

cos θ

deg (angle°) θ (theta)

When deg (angle) = 54° 10’–66° 00’

(Reference Data) Method for Computing Dimensions During Tip Shape Selection ( ※ V is the dimension prior to tip shape processing. ) C (Chamfering) G (Cone cutting) T (Tapering) R (Rounding) B (Spherical processing)

0.1

A

B

A

B

A

B

A

B

A

C

A

C

A

C

A

C

0° 30´

11.460 5.730

7° 8° 9°

0.820 0.720 0.640 0.580 0.520 0.480 0.440 0.410 0.390

16° 17° 18° 19° 20° 21° 22° 23° 24°

0.360 0.340 0.320 0.310 0.290 0.280 0.270 0.260 0.250

25° 26° 27° 28° 29° 30° 35° 40° 45°

0.240 0.230 0.220 0.210 0.210 0.200 0.170 0.160 0.140

0° 30´

11.460 5.730

7° 8° 9°

0.810 0.710 0.630 0.570 0.510 0.470 0.430 0.400 0.370

16° 17° 18° 19° 20° 21° 22° 23° 24°

0.350 0.330 0.310 0.290 0.270 0.260 0.250 0.240 0.220

25° 26° 27° 28° 29° 30° 35° 40° 45°

0.210 0.200 0.200 0.190 0.180 0.170 0.140 0.120 0.100

x 1

x 1

x 1

S

G

1° 30´

3.820 2.870 2.290 1.910 1.430 1.150 0.960

1° 30´

3.820 2.860 2.290 1.910 1.430 1.140 0.950

10° 11° 12° 13° 14° 15°

10° 11° 12° 13° 14° 15°

2° 30´

2° 30´

3° 4° 5° 6°

3° 4° 5° 6°

Cutting amount to inclined plane when the sinking quantity of the wedge is 1.0mm with an angle of A°

Cutting amount in perpendicular direction when the sinking quantity of the wedge is 1.0mm with an angle of A°

G = Standard:

SR = automatically determined.

S = Standard:

0.1mm increments

0.1mm increments

SR ± 0.1 E The spherical shape of the tip is not a perfect sphere.

K = 1° increments

Q = 0.1mm increments

Precision/Extra precision: 0.05mm increments

Precision/Extra precision: 0.05mm increments

20 < K ≦ 60 and θ= K

L ∙tan θ – A 2 (1–sin θ )∙tan θ –cos θ

0.2 ≦ Q ≦ V/2 x 1 = Q(1–sin θ ) x 2 = Q {1–(1–sin θ )tan θ }

V 2

0.5 ≦ G < θ< 45°

SR =

V 2(tanK–tan θ ) Processing limit value α for L : α = V 2tanK

0.1 ≦ S < V 2tanK K = 1° increments 10 ≦ K ≦ 45 and θ< K

x 1 =

E

x 1 = SR(1–sin θ )

x 2 = G(1–tan θ ) Processing limit value α for L : α = G

Processing limit value α for L : α = Q

Processing limit value α for L : α = V 2

A

D

A

D

A

D

A

D

A

E

A

E

A

E

A

E

x 2 = S(tanK–tan θ )

0° 30´

0.009 0.017 0.026 0.035 0.044 0.052 0.080 0.087 0.105

7° 8° 9°

0.122 0.139 0.156 0.174 0.191 0.208 0.225 0.242 0.259

16° 17° 18° 19° 20° 21° 22° 23° 24°

0.276 0.292 0.309 0.326 0.341 0.358 0.375 0.391 0.407

25° 26° 27° 28° 29° 30° 35° 40° 45°

0.423 0.438 0.454 0.469 0.485 0.500 0.574 0.643 0.707

0° 30´

0.009 0.017 0.026 0.035 0.044 0.052 0.070 0.087 0.105

7° 8° 9°

0.123 0.140 0.158 0.176 0.194 0.212 0.231 0.249 0.268

16° 17° 18° 19° 20° 21° 22° 23° 24°

0.287 0.306 0.325 0.344 0.364 0.384 0.404 0.424 0.445

25° 26° 27° 28° 29° 30° 35° 40° 45°

0.466 0.488 0.510 0.532 0.554 0.577 0.700 0.839 1.000

θ= 0° c SR = x 1 θ> 0° c SR > x 1

θ= 0° c Q = x 1 = x 2 θ> 0° c Q > x 1 > x 2

1° 30´

1° 30´

θ= 0° c G = x 2 θ> 0° c G > x 2

Processing limit value α for L : α = S

10° 11° 12° 13° 14° 15°

10° 11° 12° 13° 14° 15°

2° 30´

2° 30´

3° 4° 5° 6°

3° 4° 5° 6°

1193

1194

Powered by